Generally, crude petroleum is heated and changed into a gas. The hot gases are passed into the bottom of a distillation column and become cooler as they move up the height of the column. As the gases cool below their boiling point, they condense into a liquid. The liquids are then drawn off the distilling column at specific heights, ranging from heavy resids at the bottom, raw diesel fuels in the mid-sections, and raw gasoline at the top. These raw fractions are then processed further to make several different finished products.

Although all fractions of petroleum find uses, the greatest demand is for gasoline. One barrel of crude petroleum contains only 30-40% gasoline. Transportation demands require that over 50% of the crude oil be “converted” into gasoline. To meet this demand some petroleum fractions must be converted to gasoline. This may be done by cracking — breaking down large molecules of heavy heating oil and resids; reforming — changing molecular structures of low quality gasoline molecules; and isomerization — rearranging the atoms in a molecule so that the product has the same chemical formula but has a different structure, such as converting normal butane to isobutene.

Generally, the simplest refineries consist of crude, vacuum, reforming and some hydrotreating capacity. The next level of complexity adds cat cracking and some additional hydrotreating. The most complex refineries add coking, more hydrotreating and hydrocracking.

Refining separates crude oil into components used for a variety of purposes, from high-performance fuels to plastics.